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INTRODUCTION

Our research for this period is summarized in five parts below.

..
+
Do PR - - - e
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In part A we extend our results on adaptive routing to further connect

the two levels -- global and local. In part A.1 we present an efficient

ATV T

global routing algorithm which minimizes the maximum utilization in a

-r

link. This assures stability and generates required flows for the local

-
—

level. It's simple objective function results in a very fast implementa-

-
e

tion. In part A.2 we reconsider the local level optimization but with

Py

output flow constraints. We show that there is a reasonable amount of

I

control embedded in our priority rule. We also pose the problem as a

Markov Decision Process, identify when deterministic policies are opti-~
mal, and show for a simple example that a threshhold policy is optimal.

In part B we present several results which generalize the analyses
of random access in ALOHA, CSMA, and CSMA/CD to include arbitrary
packet length distributions. In part C we extend our work on Multihop
Packet Radio Networks to include non-exponential packet length distri-
butions and present more examples, especially the throughput of a "hot
spot."

In parts D and E we summarize some results. on algorithms for

Centralized Teleprocessing Network Design and on augmenting paths for

Combinatorial Optimization Problems. o




RESEARCH SUMMARIES

A. Studies in Adaptive Routing

A.1l. Stable Routing Patterns

As part of a general investigation in the area of dynamic routing
in computer communication networks we consider the problem of finding
stable global routing patterns. Specifically, we have proposed [1] a
two-level routing procedure where the lower (local) level adapts dy-
namically to instantaneous variations in the congestion of the network in
the immediate vicinity of each node and the higher (global) level en-
sures stability by keeping the average load across the entire network in
some sense globally balanced. We now consider this latter problem.

We consider as a measure of global balance the utilization of the
most heavily utilized network element (node or link) and seek to mini-
mize this quantity. For simplicity, we will speak only of link utiliza-
tions. (Node utilizations can be included in a straightforward manner.)
Thus, we are given a network containing N nodes and L (directed)
links. Each link, 1, has a capacity Cy. There are (directed) require-
ments T between nodes i and j. Each Tj; is satisfied by routing it on
one or more paths P(Ki)j from i to j. (In the two level adaptive routing

scheme, these paths (or links within them) will be the alternatives open

K)
ij
The utilization of each

to each requirement.) A routing pattern is defined by the paths P(
and the fraction, f(li(j)' of ri]. using each P(Ifj).
link is equal to the total flow (sum of fractions of requirements) on the
link divided by its capacity.

The maximally utilized link is in a sense the most vulnerable part
of the network and the most likely cause for the dynamic routing mech-

anism to break down (e.g. loop) due to congestion. By minimizing the

2




utilization of the maximally utilized link we seek to minimize the chance
of congestion leading to such failure. It should be noted that we are
dealing with the global level of the routing procedure here and as such
consider only long term average utilizations, not instantaneous meas-
ures. The local level of the routing procedure concerns itself with
making decisions instantaneously on the basis of the local state of the
network in the vicinity of a node. Even within the constraints of a
given P(Ifj) and f(lfj), defined by the global strategy, the local level has
considerable flexibility in choosing when to use each route and as such
can obtain substantial reductions in delay when compared with static
routing policies.

We now turn to the problem of actually finding the optimal global
routing pattern as defined above. The technique resembles the Flow
Deviation Method of Cantor and Gerla (2] and will be described in
similar terms. Cantor and Gerla sought to minimize the average delay
whereas we seek to minimize the maximum utilization of a link. Both
functions are convex functions over a convex region and as such, the
same type of procedure can be proven to yield an optimal routing
pattern. The proof is given in [2].

Our function is only piecewise differentiable and as such, the
gradient search used in {2] is not appropriate. In fact, the alternative
described here takes the special nature of the objective function, a
minimum of linear functions, into account and not only overcomes its
non-differentiability but also is considerably more efficient and easier
to implement than a gradient search.

We now give an outline of the optimization procedure. A high

level flowchart of this procedure is given in Figure 1. As mentioned
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above, at this level the procedure is almost identical to the Flow De- y

| viation Algorithm. The key difference, which is only evident in a more

| detailed description, is how the optimal superposition of flows is found.

We define the length of a link to be its utilization. Initially, we

set all link lengths to 0. We define the length of a path to be the

{
length of the longest link in the path plus a small constant times the E
number of links in the path. This latter term is added to break ties r
among paths with equally utilized links in favor of a path with the :’
smallest number of links. Note that this definition of path length is E*

different from the conventional one but it serves our purpose. Short-

I

est paths using this metric are computable using conventional shortest

path algorithms.

The routing pattern found at each stage in the optimization proce-

dure is a single shortest path for each requirement r; (In general,

i
this path is not unique, but this poses no problem.) A flow pattern is
defined as the total flow in each link and is found by loading the
requirements onto the links specified in the current flow patterns.

An optimal superposition of the current flow pattern with all pre-
vious flow patterns is then found. This is the key step in the proce-
dure and is done by finding the value of A between 0 and 1 which
minimizes V, the maximum link utilization, where A represents the frac-
tion of all previous flow patterns used. The new optimal superposition
of flows is then A times the previous superposition plus (1-A) times the
current flow pattern. A new superposition, and hence link utilizations,

is then obtained. This in turn yields a new value for V(K) and the

link lengths. We can now start another iteration. If, however, no

improvement in V(K) has been observed, the iteration has converged




and we terminate the procedure with an optimal flow pattern. By
saving the routing patterns and A(K), the values of A for each K, the
optimal routing pattern can be obtained. In particular, if P(Ifj) is the

(1,j) path first used in the routing pattern in iteration K then the

fraction of commodity (i,j) using P(Ii{j)is
Aa®)y 1 A®
j=K+1

where M is the number of iterations and the product is defined equal to
1 for K = M.

We now turn to the problem of how to find the optimal super-

position of flows. Consider two flow patterns, F(l) and F(z). Each
1)
ij
flows assigned to link (i,j) in F(l) and F(z), respectively. For any A

flow pattern assigns a flow to each link. Thus f( and f(‘i?‘j) are the
between 0 and 1, the flow assigned to link (i,j) by superposing AF(l)
and (1-A)F? s then

AL @
ij + =M
which equals

(2) ). «(2

which is a linear function of A. Dividing by Cl' to obtain utilizations,
there will be, in general, a different function, a + b1A for each link 1.
(We will for simplicity refer to links by a single index, 1, rather than
endpoints (i,j).)

We seek the value of A which minimizes the maximum of these
functions over all 1. Several simple observations allow us to find this

value of A in an efficient and straightforward manner. First, if for two
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links, 1 and m, & > a_ and by > b A then link | is said to dominate link

m and link m can be ignored as it clearly does not participate in the
maximum since 3 + bl)\ >ag b A for all values of A. Indeed, if a + ,
bl)\ >ag bm)\ for all A between © and 1 then link m may be ignored. !
Note that this latter condition is not equivalent to the former, for
example if a = 10, bl = 0, ay, = 2, and bm = 3. A

We can then arrange the links | in descending order of a and

examine the bl' Any link m for which bm does not exceed bl' where |
is the predecessor of m in the order, can be eliminated. We now have
an ordering of links which is descending in 3 and ascending in bl‘ We
then compute, for each adjacent pair of links 1 and m, the value N for

which a + blkl = a_ + bm}‘l' The )\l should form an ascending se-

m
quence. A value of N which is less than the value of its predecessor
in the sequence corresponds to a link | which can be eliminated from

further consideration. In this case, link | is eliminated and m has a

new predecessor. The Ap is then recomputed for link p the new pre-
decessor of m and this process is repeated. For link n, the last link
in the sequence, A, =1

We now compute for each remaining link | v =gt bl)\l and select
the minimum of these values. The resulting Al and v| are the desired
values yielding the optimal superposition.

This entire process is illustrated in Figure 2. The links have
been sorted so that the a, are descending. Links with nonascending b1
have already been eliminated. Thus the bl form an ascending sequence.
This is evident in Figure 2 by the fact that the lines form a sequence

increasing in slope. The intersection of lines 1 and 2 (i.e. the lines

starting at a, and az) defines Al. Similarly, the intersection of lines




2 and 3 defines Ay and Ay > A So thus far no line is dominated. The
intersection of lines 3 and 4 takes place between A = 1 so line 4 is
dominated by line 3 and line 4 is thus eliminated from further consider-
ation. The intersection of lines 3 and 5 defines a value of A3 (dotted
line), but when )\5 is computed we find it to be less than Ay So, line
5 is dominated by line 6 and removed from further consideration. A is
then recomputed from the intersection of lines 3 and 6. )‘6 is computed
from the intersection of lines 6 and 7. Finally )\7 = 1. This leaves us
with Al )\2 A3 AG, and A7 (also )\0 = 0). We search among the cor-
responding | and find vy is minimum. It and )‘3 define the desired
superposition.

The entire optimization process is illustrated in Figures 3, 4, and
5. The network consisting of 3 nodes, 6 links and 6 requirements is
shown in Figure 3. For simplicity, we assume symmetric requirements
and link capacities. We can thus assume a symmetric solution, i.e.,
routes for rij the reverse of routes for r].i and equal utilization of each
link in both directions. This allows us to only consider 3 links and 3
requirements in the example. This is done to simplify the example.

The actual procedure works with directed links and requirements. It

can also be used with undirected links and requirements but such a
situation is rarely physically meaningful.

Initially, all requirements are routed directly since the initial
shortest paths by our definition would be the paths with the minimum
number of links. This is illustrated in Figure 4a. The link lengths
are then recomputed -- link 1 has a utilization of .3 and hence a length
of .3, etc. The shortest paths are then recomputed and are shown in

Figure 4b. Note that the shortest path from B to C is now B-A-C.




The requirements are loaded onto these paths. The flow pattern is
shown in Figure 4c.

Now a superposition of the flow patterns in Figures 4a and 4c is
done. Figure 5 illustrates the dynamics of this. Note that r AC domi-
nates r,p and that the optimal A is .9 and v = 4.5. Figure 4d shows
the resuitant routing pattern formed by using the first routes for 90%
of the traffic and the second routes for the remaining 10%. Figure 4e
shows the flow pattern resulting from the superposition. Note that the
maximum utilization is .45 (in links (A,C) and (B,C)) which i -ss
than the maximum in either of the patterns in Figures 4a and 4c.

We now recompute the link lengths and the shortest paths he
resultant rouies are the same as in Figure 4a. An optimal superp. .on
between this flow pattern and the one in Figure 4e is then done. The
optimal value of A is 1, no improvement in v is found and we conclude
that the routing and flow pattern in Figures 4d and 4e are optimal.
Note that the links (A,C) and (B,C) are both maximally utilized. They
form a cut which is analogous to the saturated cut in Gerla's Cut Satu-
ration Method. (The existence of such a cut is a necessary condition
for the optimality of a flow pattern.)

We thus have developed a simple and efficient algorithm for obtain-
ing stable flow patterns for use globally as the higher level in our 2
level adaptive routing procedure. In the coming months we hope to
implement this procedure and experiment with it.

In an allied study we investigated a pattern for placing virtual
calls on a network. A simulation program was written to directly ob-
serve the dynamic performance of an algorithm which loads calls on

alternate routes according to the following algorithm:

. o —a—




1. Load each incoming call onto the route currently carrying the

smallest number of calls. (The number of calls carried by a
route is defined for the purposes of this algorithm to be the
number of calls on the first link in the route.)

2. If there is a tie among several routes in a set, S, select

route i with probability Pi(S).

The simulation was written to provide us with a first glimpse of
the dynamic performance of such a procedure as a guide for further
research in this area. We thus wanted to keep it as simple as possible
and considered a 3 node 6 link network as shown in Figure 5a with
symmetric requirements. The program can easily be expanded to con-
sider more general cases but we chose this simple one initially in order
not to obscure the basic results.

Calls arrive at each node at a rate A (Poisson) and are served at
rate p (exponential) by the links, i.e., have exponential duration with
average length 1/p. Each call has a choice of a 1 hop path or a 2 hop
path. A call arriving at a node is equally likely to be destined for
either other node. Thus, there is total symmetry in the system. It
should be noted that a call taking a 2 hop path occupies 2 links but
remains in the system for time 1/y on average (not 2/p).

The simulation is straightforward. Call arrivals are generated
randomly and arriving calls are routed according to the algorithm given
above. The number of calls taking the 1-hop and 2-hop routes were
recorded for each run. A parameter, a, determined the probability of
taking the 1-hop route when there was a tie between the 2 routes (a =

Prob {using the 1-hop route in case of a tie}).




For « = .5 the fraction of calls taking the 1-hop route was, not
surprisingly, very close to %. For a = 0, however, the fraction varied. p
For A/u =1, 80% of the calls took the 2-hop path. For A/p = 10, 66% of !
the calls took the 2-hop path. For A/u = 50, 65% of the calls took the
2-hop path. For a = 1, the results (fraction on 1l-hop versus fraction

on 2-hop paths) reversed relative to the results for a = 0.

- o ew e

. —
hdees e oo

We thus conclude that we have some control but not total control
U over the routing via a which only operates during a tie. The control
gets greater for systems with a smaller number of calls in progress, as

evidenced by the results for smaller values of A/py (which is directly

related to the number of calls in the system). Observations of the 1
number of calls in the system at various points in a simulation run led
to the conclusion that the system is stable, i.e., that the link loads
reach a stable level and remain close to that point and close to one

another.
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FIGURE 2
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FIGURE 4a
Routing Pattern 1
= Flow Pattern 2

FIGURE 4d
Superposition
of Routing
Patterns

FIGURE 3

NETWORK AND REQUIREMENTS

FIGURE 4b
Routing Pattern 2
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A.2 Locally Adaptive Routing

For routing at the local level we proposed a priority routing al-
gorithm [1]. Its function is summarized in Figure 6 whereby dedicated
traffic, i.e. those without choice, join queues Q1 and Qz in order to
obtain service on links A and B respectively. Traffic with choice join
the middle queue Q3 and is served on either A or B whenever Ql or QZ
is empty. Assuming arrival rates A1,A2,A3 and equal service times y, the
service utilizations Pa and pp are given in the Figure. The parameter
a, denotes the fraction of the non-dedicated traffic which is served by

A. A heuristic estimate for a is given by

. 1= Pa
azfzr—*_p)

Solving for « we obtain

This assumes that packets from A join A in proportion to the proba-
bility that Q1 is empty. It has been shown that, by serving the non-
dedicated traffic in idle periods of Q1 and Qz, the system achieves
close to two-server (M/M/2) behavior, thus reducing the packet delay
(averaged over the three queues) by a factor approaching 2 when
compared to two independent M/M/1 queues. The latter models the
random bifurcation with the non-dedicated traffic joining the ends of
queues Q1 and Q2 according to a random rule. The introduction of the
middle queue is the essential key to improving delays.

An additional form of control exists in our priority rule, and may

be used to achieve certain values of Pa and PR without destroying the

16




multiserver behavior. This is possible, by taking advantage of non-
dedicated arrivals to a totally empty system. Then both servers are
idle, and the packet ¢ n be sent to A . r B with preset probabilities B
and 1 - B, respectively.
Let PE = Prob. {Both servers are idle}

Then Pr {only A is idle} =1 - Pp - Pp

Pr {only B is idle} =1 - PR - PE

Pr {at least one server is idle} = 2(1 - p) - PE

The fraction of non-dedicated traffic which joins A can be modified

_l-py -Pp +Pp 1 - - Pp(l - B)
T I -P  C Z-p -y - g

(Our previous results, apparently ignoring B, actually assumed B =
1 - py/2-py-p5.)

Since F’E cannot be evaluated in a closed form, we obtain bounds.
An upper bound is the M/M/2 probability of an empty system. This is
true since such a service mechanism assumes that all Al, >\2, )\3 traffic
can use either server and thus achieves the best utilization. A lower

bound is for an M/M/1 queue. Thus

1 -
(1 - pp)(1 - pg) < Pp < {55 .

A looser but more usable lower bound is 1 - 2p.
As an example let p = %. Then % < PE < 3/5. If PL=Pp = p/2,
then for B =1, a > 7/10 and for B = 0, a < 3/10. The range of control

using B is at least 40% of the total.
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(Numerical results to come)
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The interaction between the global quasi-static routing and the
locally adaptive strategy lies in determining average link flows at the
high level and designing the local policy in order to achieve them. In
terms of the node model of Figure 7, the local problem can be formu-
lated as follows:

Given the input traffic A )‘2 (dedicated) and Aa (non-dedicated)
and the desirable output traffic AA' )‘B' where )\] + )\2 + A3 = }‘A + }‘B'
minimize the average queuing delay. In the preceding section, we
demonstrated how we can control >‘A to a certain degree using our
priority scheme and adjusting B (the probability of routing a packet
for A when both servers are idle). The impact of B can be significant
especially under low utilizations, but cannot always achieve the whole
spectrum of Ap between A and Mot A, As shown in Figure 7, at the
extreme values, the non-dedicated traffic becomes fully dedicated and
delays are that of two independent M/M/1 queues. At values of AA in
the middle of the allowable range, variations of B8 will provide the
desirable values with delays close to the M/M/2 lower bound. At the
extremes, we may have to violate the priority scheme and either defer
service of a non-dedicated packet in order to control its flow, or occa-
sionally break the priority rule in order to serve a non-dedicated
packet. Our objective is still to be able to fill-in idle periods of Ql'
Q2 with non-dedicated packets as much as possible in order to minimize
delays. From a preliminary investigation of the problem, we arrived at
the following observations:

A. No action need be taken while the system remains in a state.

Actions may have to be taken at transition times of the state

vector. By actions we mean deferment of service or breaking

19
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of priority. By transition times we mean any arrival or
departure time in any of the queues and servers of the
system. This observation follows from the Markov nature of
the system.

B. A countable number of points in the optimal delay vs. }‘A
curve can be obtained via deterministic policies, whereby
actions are assigned to states with probability one. This
follows from formulating the truncated state space problem as
a finite state Markov Decision process with average cost
minimization under a state frequency constraint (the specified
value of /\A). It is known that such problems lead to proba-
bilistic (randomized) action-state assignments in general [3].
However by incorporating the constraint within the objective
function (average delay) using a Lagrange multiplier, the
problem becomes an unconstrained optimization problem, which
leads to deterministic policies {4]. Due to the discrete finite
state and action spaces, only a finite number of optimal points
can be found using Lagrange multipliers.

A simplified version of the node optimization problem can be ob-
tained by deleting the dedicated queues Ql' Qz. Then the problem can
be formulated as an optimal control of output flows in an M/M/2 queue
as in Figure 8. The same arguments mentioned above indicate the
nature of the optimal policy as shown in the figure. We do have strong
indications that the deterministic policies are simple threshold schemes,
whereby packets defer using server B (if Ap > .\B) unless the number
of packets waiting in queue Q exceeds a threshold K. Values of )‘A
in-between two threshold policies can be obtained by implementing a
random choice at the threshold.

20
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B. Multiple Access Techniques with Arbitrary

Packet Length Distributions

B.1 Introduction

In our original multihop packet radio analysis, we assumed expo-
nentially distributed packet lengths. We have been able to generalize
the analysis for packet lengths having densities formed by the positive
sum of exponential terms (see Appendix C). In our analysis we as-
sumed that propagation delays among neighboring PRU's are negligible.
Thus in a Carrier Serving Multiple Access (CSMA) mode of operation,
collisions may occur due to the "hidden terminal" phenomenon only
(i.e., two non-communicating PRU's schedule packet transmissions to a
common neighbor simultaneously).

CSMA analyses incorporating the effects of propagation delays have
been reported extensively in the literature for singie-hop networks
(i.e., all PRU's hear each other) and fixed packet sites. As a first
step in generalizing these results, we studied single-hop multiple access
protocols with non-fixed packet lengths. Although our main thrust is
on CSMA packet radio, we also derived formulas for pure ALOHA and
CSMA with collision detection (CSMA/CD). The former was a necessary
step in order to demonstrate the impact of packet length distribution on
the simplest multiple access method, whereas the latter is a straight-
forward extension of pure CSMA and is especially popular in local
networking environments. Note that the pure ALOHA case was studied
previously [5], whereas no extension has been reported on CSMA to our
knowledge. The CSMA/CD result is so simple that it may already be

known.

24




In what follows, we summarize the variable packet length analyses
in pure ALOHA, CSMA and CSMA/CD. In all cases we assumed infi-
nitely many Poisson sources and Poisson aggregate scheduling pro-
cesses, with rates s and g packets/sec respectively. Packet lengths

are distributed arbitrarily.

B.2 Pure ALOHA

Referring to Figure 9, we consider a transmission of length Y
(shaded). This transmission will be successful if a) no other packet is
transmitted in Y seconds and b) no previously transmitted packet is
still transmitting. We are assuming zero capture. Calling these prob-

abilities Pa and Pb' we obtain s = gPan. But

[+ -]
Pa= { "9 fY(y) dy = MY(-g)

where

MY(g) = g e9Y fY(y)dy

is the moment generating function of Y and fY(y) is its density. Pb is
found by considering the T second interval prior to the transmission in
question. Assume transmissions in that interval occur Ti seconds
before the start of our test transmission and have length Yi' Then
Py =lim PGl T, > Y)
oo i i
But the number of transmissions in T is Poisson and all are identically

distributed and independent. Therefore

25
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) k

PG Ty > ¥) = 2 (P(T; > vk (G797t

-gT[1-B(T; > Y] -gTP(T; < Y;)

=e e

Here Ti is uniform in the interval (0,T) and Yi is distributed as Y.

They are independent. Thus

P(T, < Y =

or o

T
{) (1 - FY(t)] dt

and

[+ ]

TP‘(Ti < Yi) > (f] (1 - Fy ()] dt = E(Y)

Here FY(y) is the distribution function of Y and E(Y) its expectation.

Finally we have

s = gMy(-g) e 9E(Y)

Note that if Y is fixed then s = ge'ZgY as it should.

But Y is the length of the transmitted packets. Condition (b)
above does not involve the length of the transmitted packet Y. But
condition (b) does! Longer packets are more likely to suffer a colli-
sion. Let X be the length of the offered (or successful) packets. Y
should in a sense be larger since longer packets are retransmitted more
often. Due to condition (a) alone a packet of length x will be suc-
cessfully transmitted with probability e 9% and requires an average of

eJX transmissions to be successful. Thus

fe(v) = e9Y fx(y)M (@)
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dM, (g)
E(Y) = —dg /M, (9)

and P, = 1/M (9) .
Thus -gM,.,(9)/M, (9

This also reduces to s = ge-ng when Mx(g) = 9%, This result has

been already established (5] but is derived here in a different manner.

B.3 CSMA

Refer to Figure 10 for CSMA. After an idle period a packet
scheduled with rate g is transmitted. The packet lasts for X seconds.
In the propagation time a after transmission any other scheduled packet
can also be transmitted thus causing a collision. We assume X > a.
Again we assume zero capture. If no such packet is transmitted, then
the original transmission is successful, lasts for X seconds, and is
followed by an a second pericd to clear the channel and the idle state

resumes. Thus the successful rate is

s = ge” 93 P(channel is idle).

But P(channel is idle) = 17g +1a/g+ EZY

where 1/g is the average idle time and 2 is the busy period exclusive
of the last a seconds.

To evaluate E(Z) we denote the times of the transmissions of
interfering packets as Ti and their lengths as Xi' The number of such
packets is exponential. Collisions depend only upon the propagation
time a and not on the length of the transmitted packet as in ALOHA.
Thus




Z = max {X, 'I‘i + Xi}.

@ K
and Fy(2) = Fy(2) 2z [, (2)1%({3 9

where W = 'I’i + Xi' Ti is uniform in (0,a) and is independent of Xi'

which is distributed as X. Thus

-ga[l - Fy(2)]
Fz(z) = E‘X(z) e

and E(2) = g 1- Fz(z)] dz.

The last two equations can be used to find E(Z), although not easily.
Finally ‘

e 98

= _ge
s T+ ga+ gE(2)

B.4 CSMA/CD

Refer to Figure 11 for CSMA/CD (unslotted). Here collisions are
detected and transmissions aborted. Again packets are scheduled with
a rate g. After an idle period a packet is transmitted. If no packets
are transmitted in the next a seconds that packet is successful. After
a seconds to clear, the channel returns to idle. A scheduled packet
can be transmitted in the first a seconds and will cause a collision.
But it will be aborted a seconds after the original transmission. The
original transmission will be aborted a seconds after the start of the

colliding packet. Thus, as before,

28
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s = ge”9® P(channel idle).
P(channel idle) = T 1a/+ -

and 2= X, with prob. e”92

min{T,} + a, with prob. 1 - e 93,

Here we assume, for convenience, that X > 2a. Solving we get
E2) = E()e 98+ 1 (By+a) B 9
k=1 :
= E(X)e 93 + é [1- (1+ga)e 93] + a(1 - e799)

or
ge 29

1+ gE(X)e 92 + (1+2ga)(1-e79%)

s =

Note than only E(X) appears in the above equation.
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THROUGHPUT ANALYSIS OF MULT/HOP PACKET RADIO NETWORKS®
Rabert R. 3oorstyn and
Aaron Kershenbaum Veli Sahia
Polytechnic Insttute of Bell Laboratories

New York Hoimde!, New Jersey 07733

333 Jay Street,
Brookiyn, New York 11201

ABSTRACT
We consider the problem of obtining exact sxpressions for throughput and blocking
probabilities in multihop packet ratio networks operating under CSMA. We obtaia exact results

for a general class of message lengths, for general topologies, and for perfect capture. These
results are obtained by assuming perfect acknowiedgments.

I. INTRODUCTION
We consider the problem of obtaining exact expressions for taroughput and dlocking

procabilities in muitihop packet radio networks operating under carrier sense multipie access
(CSMA). Procedures are developed which can be used to inaivze genera) topoiogies for a

general class of packet leagth distribudon. Exampies of chains, rings, and stars zre presented.

II. THE NETWORX MODEL

We consider the probiem of analyzing the throughput capatiiity of 2 multihop packs:
radio network operating under carrier sense multiple access (CSMA). Thus, we assume that
the aetwork is comprised of terminais equipped with radic transponders suitable for

broadcasting data over a limited distance. In general, the source and destination terminals

* This researct was smrtiaily sugperted oy USARMY CINCOMS uncer contract DAAK 82-30-K-0579, and by ke
Nadoral Sceace Foundauon undsr grant ENG-79-08210.
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cannot hear each other directly, and the data has 10 be relayed by one or more intermediate
devices. A separate set of devices, called repeaters, may =xist for this purpose, or the terminais

themseives may relay messages for one another.

Control of the nerwork is completely distributed, i.s., no station or ceatral controi
mechanism is assumed to exist. Rather, we assume that each source terminal has prestored
one or more routes to all destinadons and includes all necsssary routing informadon in the
packets if trapsmits. These assumpdons are made merely 10 simplify the presectation. la fact,
the results presented are valid for networks using alternate routing as long as routing changes
are not made over short time intervals. One of the motivations for this study came from 3
consideration of the design of routing procedures for such networks. It was necessary,

however, to first develop aa understanding for the throughput of various topologies.

Exogenous trafic is modeled as independeat Poisson processes arriving at each
source node, with appropriats rates and packet lengths. Tae topology is specified by a listing of
which terminals (or repeziers) can hear each other. In the remainder we will aot distinguish
betweesn terminals and repeaters and will refer to themn colleczively as either terminais or aodes.
In general the transmissions of one terminal can be heard by many other terminals. The

routing will specify which terminai is (0 repeat the -packet, if aecessary.

If two or more transmissions are simultaneously heard by a terminal (called 2
“collision’) at least one, and possibly both, is ‘lost’ and must be retraasmitted. We assume
retransmissions are scheduled at 2 random instant in time sufficiently far in the future so as to
preserve the Poisson nature of the combined tradic stream, which now consists of exogenous
traffic and rescheduled trafic. For this study, we assume that a packet can be retransmitted as
many times as is necessary, i.e., that there is 10 maximum allowable aumber of

retransmissions.

At any time, terminals may either transmit or recsive, they cannot do both

simuitaneousiy. Before transmitting, a terminal seases the channei. If it detects that any of its




neighbors (i.e., terminals that it can hear) are transmitting (by. ¢.g, seasiag a carrier) it
reschedules the transmission as for collided packe:s above. If at the scaeduled time for a
transmission, the terminal is already engaged in transmitting a packet, the aew packe: is also
rescheduled as above. Thus packets are continually rescheduled untl they are successfully
delivered to the next terminal on their route. We assume that the total stream of traffic
scheduled by any terminal is a Poisson process. This includes originating traffic and packets
rescheduled either due to collisions or due to the channel having besn sensed busy. This
scheme is called carrier sense multiple access (CSMA). The Poisson assumptioan is valid for the
assumptions made above and will yield accurate results for throughput. Compromises will have

to be made, however, if an accurate picture of time delays is 10 be considered.

It is possible, due to non-zero propagation delay, that collisions of transmissions
from neighboring terminals may sall take place despite the CSMA strategy. This wiil occur if 2
terminal senses the channel before another terminal’s transmission is received. Tuis effect is
small if terminals are reasonably close or are not transmitting at high speed. We will ignore this

phenomena here, and assume that all transmissions are instantly heard by their aeighbors.

A passive acknowledgment is used for transmission to neighbors. The transmitting
terminal listens to the chaanel to hear if a packst is being rebroadcast by a neighbor. If aftera
prespecified time interval, the transmitting node does not hear the packet redroadeast, it
retransmits the packet. But the packet may have been successiully received by the rneighbor
even though the originator does not hear the rebroadcast. Duplicate packets may bte
transmitted and deleted only at the final destination or they may be detected and deleted eariier.
An end-to-end acknowledgment is returned to the originator from the final destination. In this
paper we assume that passive acknowledgments are aiways heard '~ ignore the efTect of end-
to-end acknowiedgments. Alternately, these acknowiedgements couid tave Seen added to the

required traffic. (In a sequel paper, the effect of passive acknowledgements will be studied).

We depict the topology of the network by a graph where terminais are represented




by nodes. The nodes are connected by a iink if they can hear each other’s transmissions. i.e.. if

they are neighbors. As an exampie see Figure 1. Node A can hear nrode B. but nct nede C.
Node B can hear both nodes A and C. Node C can lear node B, but not node A. If node A is
transmitting to aode B and node C begins wransmitting, then the transmission from A to B may
be lost depending upon the ‘capture’ assumptions ¥e make. A conservative assumption is that
the A to B transmission is lost - this is kaown as zero caprure. Alternatively, perfec: capture
assumes that this transmission is successfully received. Half-amplituds capture assumes that
the transmission is lost if C dominates A at B. This can happen if C is closer to B thaa A is to
B, or bas a greater signal strength perceived at B than A has. If A dominates C, thea the
transmission is successful. However, in all cases of a collision we assume the later transmissioa
is lost. Thus if C is transmitting to B, this packet is lost in all cases. We wiill consider only
perfect capture situations below. Note that under CSMA if node B is transmitting, aeither A or

C is allowed to transmic

We assume that a routing has besn specified. This takes the form of deciding whick
of the neighbors are to rebroadcast a packe: from a particular source to a particular destinacion.
Thus the amount of trafic that a terminal wishes to send to its neighbor can be computed. If
these rebroadcast packets are scheduled at a random dme far in the future the Poisson
assumption for traffic streams is preserved. We assume that the trafic between neighbors is
specified and form independent Poisson procssses. We assume that the packet length is
reassigned independently at each hop. This is analogous to the ‘independence assumption® in

queuing networks.

The details of CSMA for a single hop network can de found in the papers by Tobagi
and Kleinrock“). Tobagi has also developed some simple models fér two-hop networks(:).
Details of a packet radio network can be found in a paper by Kahn(3). A discussion of routing
in muitibop packet radio can be found in the paper by Gitman, Van Siyke, and Frank (¥, An
earlier version of this paper was presented at ICC'80(S). More detils can be found in the

thesis of Sahin($6).




HI. GENERAL RESULTS

In this section we develop some expressions that are valid for the packet radio
network we have modeled above using CSMA and with an arbitrary packet leagth distribution.
Let i be a node, », one of its neighbars, N, the set of all the neighbors of i, and .V, the set of
all i’s neighbors, including i. Let g be the toual rate (in packets/sec) of all scheduled traffic at
node i. This includes originating traffic and all rescheduled traffic and is assumed to be Poisson.
Let 1/4; be the average length of packets traasmitted by node i. Let G, = g/k, be 2

normalived rate.

Nods i is cither busy (transmicting) or idle. It will treasmit a scheduled packet if at
the instant it is scheduled all nodes in N, are idle. Let A be a set of nodes. Let P(A) be the
probability that at a random instant all nodes in A are idle. The nodes not in A may or may
not be idle. Similarly P(i), P(i,A), P(A,B) are the probabhilities that i is idle, node i and aodes

in A are idle, and all nodes in A and B are idle.

Since traffic is scheduled at node i with a Poisson rate g, will be transmitted only if

N is idle, and transmissions have average length 1/4,, the probability that i is busy is given by
1=P(i) = G2P(N) (1)
If i is busy then under CSMA, #, must be idle. Then since
P(ny) = P(n i) + P(nli busy)(1=P(i)]
and P(myli busy) = 1, we have

P(mi)=P(n) =P(i) —1 )

Similarly, if 4 C N/,
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% P(A)=P(A)+P(i)—~I| (3)
. .
letting A = V, in equation (3), and using 1
P(N) = P(N)/P(iIND) y
t g
we get i
P(ilND~ - T':T, (4) ‘

Equation (4) is often found in CSMA literature.

A packet from i to & will be transmitted when it is scheduled if VY, is idle. During
the transmission all aodes in N, will be idle. It will be successfully received at n, if all
neighdors of a; not ia N, are also idle at the beginning of transmission. Ctherwise a collision

will occur. Let 5 a De the rate in packets/sec, determined by the routing and assumed Poisson,

of the traffic that i wishes to sead to #,. This is the required throughput or ofered tradic. Let

&, De the rate of ail scheduled traffic from i to 7. We have aiso assumed that all these
streams are Poisson and independent. Of these g; ., packets per second, 5, must be

successful. Thus

:l.l, Sl.n,
———— D et WD v e
G = PN, (5)

where Sy o, = 50 /i8¢ 204 Gy o = &4/ -

The total scheduled traffic (normalized) at 2 node is given by

Gi=3 G (6)
A,QN,.

From equations (1) through (6) we wish t0 derive a relation between the S,‘,,, and G;, and




determine the maximum S,,' the network can support. This we call the (maximum)

throughput or capacity. In the next section we develop this relationship for exponential packet
lengths and arbitrary topologies. Later we extend the analysis to a geaeral class of packet

length distributions.

IV. EXPONENTIALLY DISTRIBUTED PACKET LENGTHS

If the packet lengths are exponentially distributed, then the system can be viewed as
a Markov process where the states are identified by which nodes are idle and which are busy.
Let D be a set of busy nodes. Because of CSMA, n0 nodes in D may be neighbors of each
other. Let Q(D) be the probability that at an instant of time, all nodes in D are busy, and all
podes not in D, are idie. Then eack set, D, represents a s:ate in 2 Markov system, and Q(D) is
the state probability. In perticular, the null set D = ¢, represeats the state that all nodes are
. 'idle.

Assume the system is in state D. It will leave the state if any ieD stops
trapsmitting. This happens with rate 4,. Thus the transiton to state {D-i} occurs with rate 4.
The only other way to leave state D is for one of the idle nodes that is not a neighbor of any
ieD to begin to transmit. This occurs with rate J;,. Let .Vp be the set of all acighbors of ail
nodes in D. Then the tramsition from D to {D+j}, jeVp, occurs with rate g;,. The globkal
balance equations for this system are

(Zwm+ T g)eD)=3F 4 QD=)+ T 4; QD+) &)
1D ;‘ N

D (D ﬁ § wo

where D is one of the special sets defined above.

It is easy to see that these equations are satisfied by

Q(D) -%a(o-n =G, Q(D~i), ieD (8)

}
?
t
[
'




Thus

QD) = (I G) 2(s) 9)

where we adopt the convention that ‘n. G; = 1. Summing over all D, we get
L]

JQD)=3 (O Q)] =1 (10)
Y] ap ‘0
In the previous section we found we were interssted in quantites like P(A), where
A is any set of nodes, and P(A) is the probability that all nodes in A are idle, and all nodes not
in A may or may not be idle. This can be found by summing Q(D) over all sets D that do not

contain nodes in A. Thus

b ('%G:)
P(A)= 3 Q(p)-i&L'__ an
DCA® 3%3, (lcub GI)

where D CA¢ refers to all such sets contained in the complement of A and N is the set of all

nodes. We adopt the shorthand actatian.

SP(8)= 3 (O G) (12)
pca o

where SP refers to sum of products. Thus
P(A) =SP(A°)/SP(N) (13)

Equations (5), (6), and (11) can be used for any topology to generate the solution

to our problem. The equations relating the S,,,.,, Gia» and G; can be solved iteratively. For

exampie, equation (5) now becomes

e

.

-




Sf.ﬂ, SP(UV: "'qulc)

(14)

where by A+B we mean the union of A and B.

Evaluation of sums of products in equation (12) are made easier by the following
two rules. Consider two sets of nodes A and B such that no noce in A can hear any node of B.

Then

SP(A+8) =SP(A) SP(B), AN\ B =% ' (19

SP(A) = SP(A=i) + GSP(A—N;), ieA (16)

To prove these rules just consider all products, We have successfully evaluated many compiex
topologies with these procedures.

There are other reiations which will be found useful in extending cur model to more
complex situations. We prove some of these below. Let C be a cut, i.e., a set of nodes that

divides the network into three parts A, B, and C, where A and B have no neighbors in common

as in equation (15). Let 4=A4; + 4,, 3 = 3, + B, where 414, = 8,3, = ¢. Thea

P(4,,C.8)) - SP(A,+8-) - SP(A4)

Puilc.ay = P(C.8) SP(A+8-) SP(A)
But
P(A4,.C) SP(A,+8) SP(A.)
Puile) P(C) SP(A+B)  SP(A)
Thus

. e—
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P(A,lC.B)) = P(4,/C),Ca cu (17)
we also have
P(A,B,[C) = P(a4,lC)P(B,|C), C a au (18)
In partcular if C = ¥/, then
PN, B) = P(il¥), BCNF (19)

V. A GENERAL CLASS OF PACKET LENGTH DISTRIBUTIONS

In this secdon we extend the resuits just proven to inciude a general class of
distributdons for the packet length. We will show that the procedures developed for perfect
capture are indepeadent of packet length distribution. To prove this we start with a simpler
extension. In the above we assumed that all packet leagths are exponentally distributed and
kave the same mean when transmirtted by 2 node to any of its aeighbors. Diferent aodes may
transmit diferent average length packets, however. Now assume that while ail packet lengths
are still exponentially distributed, the average length pack_ct transmitted from a node may be
difereat to cach of its aeighbors. This will be useful in anaiyzing different protocols (to be

presented in a s~auel paper) but is presented here as the first step in the desired extension.

Now the state of the aetwork depends upon who is transmitting and to whom. We
can keep the same structure by breaking every node iato a set of “micronodes’, one for each
neighbor. These nodes may be indexed by (i,n). If i is transmitting to », then this node is
active, otherwise it is idle. Micronodes are connected in our topology if they can hear each
other. Since CSMA still prevails, all micronodes for a given node are fully connected.
Furthermore all micronodes for nodes that are connected in the original topology are also fully
connected. The analysis now procseds as above since the Markovian property has been

maintained. For exampie, equation (14) still hoids, but sow .V, and ¥, are coilections of

B
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micronodes. Note that .V, conuins the full set of micronodes for i and all aeighbors of ;. St
and G;, have the same meaning as before. However they are normalized by 1/u,,. the

average packet length for packets going from i to . The terms in the sums of products are

G, 4, for the micronodes.

Let A couotain full sets of micronodes and include the node i. Then from equation
(16)

SP(A) = SPLA~(i 7)) + G SP(A=N,) - (20)

Here we have used the fact that V() =/, aad the notation that .V, is the set of all

micronodes of i anad neighbors of i. Since this is equivalent to the original set of node

geighbors of | we keep the same notation. Repeating for all neighbors of i we get,

SP(A) =SP(4—i) + (2 G,_.')SP(A—.'V{) 21
l’
If we let
£
G =—m=3 Gi -3 Sin/ i x, (22)
Bt N

then equation (16) is preserved. In a similar manner all previously derived equations can e
maintained where G; takes on the definiton in equation (22). Here 1/4, is an average packet
length, averaged over the different average packet lengths to different neighbors in proportion

to their scheduied rate.

We now prove our main theorem for this section. Assume that the length of

packets transmitted from i to #, has the density




...’.."‘lx

fi_;.,(x) - E Qia Hing € (23)

J

where
anZOdea,,’J-I
i

Thus the length is distributed as a positive sum of exponentials. Another way of looking at this
is that the a’s are the probabilities of choosing the associated exponential density. Now create
micronodes for each triple (i,m.5). Here we use
Stad =St/ Bray Where 8, ;= . S . The micronodes for some i and any n,, are
fully connected as are the micronodes for neighboring nodes. Equations (20) and (21) aow

become

SP(4) =SP4 — (i, )] + G, . SP(A=N,) (24)

[ W)

and SP(A) = SP(A—i) +

b G,MJSP(A-N,-) (29)
aJ

In the same manner as above, we (et

& Simd 8, ]
G:'“—"Eax..,.,"zﬂ ‘-2 2“ |
N ag A LA J l.n,.JJ
- 2 Gl_".
b ]

These equatians are used to find P(A) in terms of G, and are identical in form to those derived

for exponentially distributed packet lengths.

Equation (5) in turn comes from




-13.
Sl.a,./ - GI.A,JP(‘Vi“’vn_,)' ()
Summing over j, we get equation (5)
Sia=Z Siay = GiaPWViTN,) (29)
J

i Thus all relations betweea the G's and the S's are preserved. The actual nature of :he problem

is taken into account by the relationship between the S's and the normalization by the u’s.

We can now restate the above theorem. Let i be any nmode and jeN,, the
seighborhood of i. Let &, be the successful (desired) rate from i to j, in packets/sec. Let the

|
!
i density of the packet lengths be
!
1

fiy(x) =3 ay ;xmiyxexp "“,xwherepu*>0,au_;_>.0. -
F

and 3 a4 = 1.
k

Let 1/u,; = 3 a4/ 0 De the average packet length, in seconds. Let Si, =5 /8 . Then
k

S

: oS = P(MUN;) = a funcion of (G1,Gs, ")
;‘ where
!
G =3 Gy
: th,‘
»
'1 Proof:

Iel :lJJ-alJ.*"J’

ty Then 5,4 =a a5, =PV, UN)E 4
l
|
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where Gf - E G(J - E E&‘J.k/)‘id.k'

A JuN ok

Dividing 5, ; by 4, and summing over k. we get

S'J - P(Avy Utvj)G,J

VL EXAMPLES OF THE PROCEDURE

As an example consider the chain of four nodes shown in Figure 2. We assume
Si=Sy=Spy=Sy=Su=Sg=S5 for simplicity, and perfect capture. Alsc note that
G13=G, Gy=G, and by symmetry G, =G, Gy =Gy, and Gy = G;:. Also from

equation (6), G; = Gy + Gy = G;. From equation (5), we bave

T PULY = T = PL23)
But
SP(N) -lzw (IG)=1+G,+G:+G3+G,+G,G;+G:G,+G,G,
=1 +2G,+26G,+2G,G,+G}t =4
and

P(1,.2,3.4) = 1/4, P(1,2,3) = (!+G)/A = (1+G)/A

Solving, we get

Gz - Gx(z"'Gl) and S = G‘(I"'Gl)/l .

or

S = G (1+G )/ (1+6G ,+7G+2G ).
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We can 10w find the maximum value of S possibie. the throughput of the chain, which is .128,
obtained when G, = 0.71.

In general the equadoas cannot be sclved as simply as for this four node example.
Equation (11) is used to get expressions for P(A) in terms of G;. Thea equation (14) is used

to get expressions for Sy, in terms of G; », 3ad P(A). Equadon (6) provides the relaton J

betweea G; and G, 4 The S a, are found from the offered traffic, the routing, and other ,
assumptions and are considered as iaputs. The equations are iterated uatil a solution of G's for
8 set of S's is found The maximum set of S's possible is considersd the throughput, or
apacity, of the network. For some modest size problems, as above, the equations can be
solved directly.
As a second example consider the star topoiogy shown in Figure S. Here assume
there are L legs of N = 2 nodes each. Denote the center node by 0, the nodes one hop out by
1, and the other nodes by 2. Further assume symmetrical traffic in the nodes and
Sn =S p=S;=S5;; =S. Then LS is the total traffic successiully transmirtted by node 0. The

equations are

SP(L—13 2 nodes)

S 4 S

Gan Go Gu Gun SP(N)
= (1+GLt~l/a

Sz S Sy S SP(L -1 legs)
- - - = = P((,],2 -2 LT ) . 1-G,+G.)E7Ya
G, G Gy G ( ) SP(N) ( A

whers

A= SP(N) = (1=G,+G Pt + Go(1=G )t

G =G+ G,

But Gig=Go/L and G;3= G,, 50 G, = G; + Go/'L. Thus we have two eguations:




- 16 - ;

LS/Go= (1+G)*"'/A and S/G, = (1+-2G+g/L)*™V/A

For any § < Spas, they can be solved for Gg and G.. Alternatively for any Gy we can find the

corresponding G» by solving

G{l1+G YLt = G (122G +Gyl) L™ .

Then the relation between S and G, can be studied. We then find the maximum S, S p,.

possible. LS, is the maximum throughput of the star.

For larger problems we will get several equations of the form

Go= LSA/(1+Gt™!
Gy =SA/(1+2G+Gy L)

For any S we solve these iteratively. Siace Gy = LS, G, = 25, and G, = 5, tke lower
bounds are good starting poiats for G;. For S sufficiently less than Sg,, we have found the
iteration converges monotonically and rapidly. As S approaches S, from belcw the
convergence is stll monotonic but siows appreciably. For S > Sa the iteration does not
converge and often diverges dramatically. We have uncovered no serious aumerical problems

with this procedure in the many exampies we have evajuated.

V1il. NUMERICAL EXAMPLES
We consider here three different topological structures with exponentially distributed
packet lengths and perfect capture. We assume all Sy, = S, for all i, and take full advantage of

symmetry. The three topologies, shown in Figures 3, 4, and 3, are a chain, a ring, and a star,
all with various lengths. In each case we find the maximum throughput, S. These are givena in

Table 1.

The maximum one way throughput for a long chain is S = .086. This throughput is

apprcached when the leagths of chains exceed i0. For smailer length chains the throughput is
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bigher. In CSMA transmissions of aeighbors may not overlap in time. Since each aodes
tragsmits successfuily IS packets per average packet transmission time, then we must have S <
1/5. The throughput is slightly smatlar than half of this limit. The cause of the reducton is
coilisions from transmissions two hops away, the so-called *hidden terminals’. The throughput
of S = 086 for a chain, although the maximum possible, is not a useful operating point. Asin
ALOHA, this is the point at which delays become infinite and the system is unstabie. The

network would have to be operated at some lower level

It is instructive to compare the performance of multihop CSMA with that of slotted
ALOHA. Let p be the prohbiht; of transmission in one direction at 2 node. Thea S = p(l-
Zp)2 for a long chain. S ... bere is .074 which is approximately 14% less than that for CSMA.
There are two factors working here. CSMA will produce less collisions since neighbors will not
interfere with each other. Hidden termipals will stll produce collisicns. (All terminals are
hidden in ALOHA). But CSMA prohibits possible successful tmansmissions. "For instance,
node 3 can transmit successfully to node 2 while node 4 is transmitting successfully to node §.
This is possible in ALOHA but prohibited in CSMA. This is one of the prices mid to contrel
collisions.

We note that for a ring greater than 7 nodes the maximum throughput is the same
as that for a long chain. This is expected since the congestion is now in the middle acd it is
unimportant whether or not the chain is closed. A star with two legs is just a chain with N for

the star replaced by 2N+1 for the chain.

Consider the star configuration as representing the center node (0) trying to transmit
to some node or nodes far away via many repeaters. For one leg, the maximum rate is .086.
For two legs, the maximum rate is 2S or .172, exactly twice. The results are shown ia Tabie II
where the throughput of the canter node is given by LS. We see from Table II that wher
the throughput doubles for L = 2, it increases only by 20% when L= 3, by 4-5% further when

L=4, and by 2% when L=5. Congestion at the central node is limiting its ability to increase its
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throughput. Additional legs. beyond three, are not reaily helpful.

We have investigated ways of reducing the congestion at the ceater node. For larger
L. the traffic in each leg is limited by congeston at the center. The collisions that cause most
problems are for transmissions from the first level of nodes (1, N+ 1, 2N+1,.., (L-1)N+1) ta

' the center. These are coilided with by other first level nodes. To reduce these collisions we

considered connecting the first level nodes in a ring and then fully connecting them. These
results are also summarized in Table L. Whea the first level is unconpected the throughput
saturates at .229. Whea the first levei is fully connected the throughput with 9 legs is .252, a
15% increase. For four legs, the ring connected topoiogy is best, providing some compromise

between reducing coilisions and allowing simuitaneous transmissions.

The best that we can expect in the fuily connected case is LS =< 1/3. This is
because all transmissions from the ceater node and all first level aodes cannot overlap. We will

discuss asymptotic resuits with even larger stars and chains in the next section.

VIII. ASYMPTOTIC RESULTS

We are interested in asymptotic results for several reasons. They provide us with
the limiting bekavior of the finite networks previously studied. Since the bebhavior of these
getworks seems to converge rapidly with their size, if asymptotic resuits are easier to obuin,
they would be useful. We are aiso interested in very large networks. A final reason is to verify

some of the bounding arguments on throughput made in the last section.

We first consider an infinitely long chain. Welet S, ., = §; <, = S. Then all nodes

are identical. Also G,J+| - Gl.i—l =G, /2. Thus with G =G,

DS DS o piimt i il i) SP(=co.... i=NSP(i+].... ) -
G, = Pl=1,i,i+l, i+ SP (—0....73) (29)

We can write the deaominator as




SP(—~,...,0)=SP (=@, - - i=~1)SP(i+l,....®)+GSP (—o0,....i =2)SP (i +2,...,0).

SP(i—k,....c3) SP(=cn..... +k) o
N -3 -3 .
ow let Q —) r—— We observe that 0, = | fork=0and if it

converges is independent of i. Thea equation (29) becomes

2S 1

G " 2iarGe: - o
But

o - SPL—p,g+k;’D(::Si; 0.tk =2) Qi1 + GQis 31

and Qg- 1. Thus Q:‘Q] + G. Therefore

)

BI6 =508, 7 26)

or

G

T NT T

(32)

We note that since Q. = -l—. from equation (3{) we have

QA

G = Q@) (33)

Finally we bave

Q.1

S —— e
2Q:(2Q~1)

@zt (34)

The maximum value of S is .086, reached when @, = 1.70or G = 1.2.




IX. EXTENSIONS AND CONCLUSIONS

We have presented a simple but fairly realistic model of a multihop packet radio
network and have obtained maximum throughputs for general topologics and packet lengths.
We have assumed perfect reception of acknowledgments and have not included additional traffic
due to end-to-end acknowledgments. Some aspects of ackaowledgments can be included by
increasing the required traffic. We are invesdgating the effect of imperfect acknowledgments
and differeat retransmission strategies. The model should still be useful under these

extensions.
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Table !

Mazimum One-Way Throughput (S)

Number Star J
of Number of Legs, L .
Nodes, N Chain Ring L=2 L=3 L=4 L=5 .
1 1.000 1.000 .167 .103 .074 .08 -
2 500  .500 111 076 .07 |
3 167 167 .097 072 055 B
4 128 073 092 070 .054
L] J11 1100 069 054  .044
6 102 .083
7 097  .087
8 094 .08
9 092 .086
10 091 .086
© 086  .086 .086 .069 .054 .044




Table !1
Maximum One-Way Totai Throughput of the

Central Node in a Large Star Arrangement

Maximum Throughput, LS
Center Arrangement

Number of Legs  Unconneced  Ring-Conneced  Fully Connected

1 .086

2 172

3 .207 .198 .198
4 216 228 .216
5 220 230 230 -
6 .220 240
7 .245
8 248
9 252

el

L

ity
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Generatized Augmenting 2Paths for the Solution of Combinatorial
Cptimization Problems

Aaron Xershenbaum
Polytechnic Instutute of New York

Abstract

Alternating chain prccedures can be thought of as generalizations of the greedy
algorithm in that instead ot accepting the best remaining element, they seek to
obtain a betler augmentaticn by examining a wider range of alternatives. It is
possibie to generalize the notion of an augmenting sequence to include augmentations

which are in effect trees as cpposed to simply paths such that these augmentations
are sufficient to guarantee optimality. Unfertunately,
trees are of exponenual size.

in the worst case, these
We examine the application of such generalized
augmenting sequences to the solution of NP-complete problems and examine their
effectiveness and efficiency.

Introduction

The thecry of NP-completeness, which was first expounded by Cock [1], has led
to a search for a unified treatment of combinatorial optimization problems. Cook .
was able to characterize a very large class of interesting and important proﬁlems
as being equivalent in the sense that an efficient algorithm capable of finding an

optimal solution to any ore of these problems can be used to obtain optimal solu-

tions to all of the others. Many papers by manv authors and an excellent com-

pendium (2] of problems in this class (as well as techniques for proving that a
problem is in this class) have been published since Cook's seminal paper. Prob-

lems in this class are called NP-complete problems (or, more properly, NP-hard when
they are optimization problems as opposed to decision problems).

Cook's results can be interpreted in several ways. One of these is to say that
many clever people have spent many years trying and failing to find efficient

algorithms for individual problems in this class. Surely one of them would have

succeeded if, in fact, such algerithms exjste;i. Hence, it is unlikely that such an

algorithm will be found and it is tempting to stop looking for one. This leads to

the development of heuristics for the solution of such problems [3] and to proba-
bilistic methods (4].

An alternate interpretation is that this pessimistic view is justified only with re-
spect tc algorithms which guarantee optimal sclutions and reasonable runtimes for

all iastancas (input data sets) of a problem. In this paper we speak of an algo-

rithm's runtime teing reasonable if it grows polyncmially rather than exponentiaily

with the size of the problem. This does not preclude the existence of algorithms

with guaranteed reascnable runtimes and which yield optimal (or near-optimal)

solutions with high probability. Nor does it preclude the existence of algorithms




which guarantee optimal solutions and which have reasonable runtimes with high
probability. There are many examples of both types of algorithms which are used
in practice to solve speéific NP-complete problems. Most impcrtant, the theory of
NP-completeness does not preclude or even lessen the likelihood of the existence of

algorithms which solve specific (nontrivial) instances of a problem and guarantee
both an coptimal solution and reasonable runtime.

.
”

In this paper, we explore this second, more optimistic, point of view and present
a family of algorithms for the solution of an NP-complete problem. Some algorithms
in this family have guaranteed reasonable runtimes. Others guarantee optimal
solutions. While the algorithms are presented for the soiution of a specific prob-

lem, the technique can be extended to the solution of other problems as weil.

Matroid Theory

A specific way of approaching the solution of many combinatorial optimization
problems is via matroid theory. The excellent book by Lawler [S] gives a complete

treatment of this. Here we outline the fundamentals of this thecry which are

necessary for the presentation which follows.

A matroid is a couple (E,F) where E is a finite set of m elements:
E=1fe. | j=1,2, ... M}

and F is a family of independent subsets of E£. The notion of independence is
quite general. We require, however, that it satisfy two properties:

Pl: Everv subset of an independent set is independent, i.e., if

leFand J C IthenIeF‘

P2: If IP and IP+1 are independent subsets of E containing P and P + 1
elements, respectiveiy, then there exists an element, e ¢ [p+1 (e £ IP)
such that IP w{e} is an independent set containing P + 1 elements.

Given twe matroids, (E,F;) and (E,F;), defined on the same set of elements, but
using two different notions of independence,’ we define an intersection of them to

be any subset, I E, such that I ¢ F;, and 1 ¢ F. This definition can be ex-
tended to cover three or more matroids as well.

Many combinatcrial optimization problems can be thought of as finding the best
independent set in a matroid or the best intersection cof two or more matroids. If
weights, w]., are associated with the elements, ej, in E, then one can speak of the
best set as being the cne with largest total weight. The maximal (or minimal)
spanning tree problem can be thought of as f{inding the maximum (or minimum)
weight independent set in a matroid (E,F) where E is the set of edges in the
graph and F is the family <f forests. A forest is defined to be a set of 0 or more




edges which do not contain a circuit. As another example, Lawler [5, p. 304]

shows that the Traveiing Salesman Prcblem can be thought of as finding the best

intersecticn of three matroids. The problem of finding the maximum weight inter-

section of three matrcids has been shown toc be NP-complete [2]. Lawler snows [5,

p. 364) that the problem of finding intersections of four or more matroids can be

reduced to that of finding intersections of three. There are many other combina-

torial optimization problems which can be naturally thought of as matroid intersec-

tion problems. The theory of NP-completeness assures us that all problems can be
thought if in this way.

We will consider one of the simplest possible 3-Matroid Intersection Problems in the
sequel for the sake of clarity. The problem considered is the Three Dimensional
Assignment Problem (TDAP). In this problem, we are given N people, N jobs,
and N days. There is a cost, Cijk of having person i doing job j on day k. Each

person is to do only one job, each job is to be done only once, and only one job
is to be done on a day. Formally the problem is:

Minimize 2 = I C... X..
.k ijk “tijk
such that

Y
N

M

o =IX. =X X. =1forijk=1,2, ...N X, £ {0,1}
i iik i K ijk i,k ijk ijk

Thus, setling Xijk to 1 corresponds to having person i do job j on day k. This

probiem can be viewed as an intersection of three partition matroids. Given a set

of elements, E (in this case, the Xijk)' a partition matroid can be defined by a

partition of E and a vector, A, constraining the number of elements of E which

may be selected from any part of the partiticn. Formally, we have the partition cof

E into subsets Ej' j =1, ... k, where
UEj=E and Eif\}:j=¢fori¢j
j

and an integer vector A = {ajl i=1, ... k'}

A matroid (E,F) is then defined where F consists of all subsets, I, of E formed by

selecting no more than aj elements of Ej'

In the case of the TDAP, the first partition of the Xijk is by person, i.e.,
Ei = {Xijklj =1, ... N; k=1, ... N}

and a = 1 for all i. The independent sets in this first matrcid correspond ¢

assigning each person at most one job.

Similarly, two more matroids can be de-
fined to constrain jobs and days.

Intersections of these three matroids corresponc
to feasibie partial assignments and intersections of maximum cardinality correspend

A
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to feasibie compiete assignments.

If we define weights wijk associated with &
xijk:

e
Wik = C - Cijk

where C is larger than any Cijk' then the maximum weight intersection corre-
sponds to the optimal solution’to the TDAP.

Augmenting Paths

we now define a family of algorithms for the solution of matroid intersection prob-
lems. These are generalizations of the basic procedure given in [6].

Given a matroid (E,F) (and hence a notion of independence) and a (not necessarily
independent) subset S, of E, we define the span of S, dencted sp(S), as S to-
gether with all elements of E not independent of the elements in S, that is

sp(S) = { e | I «{e} £ F where ] is any independent subset of S}

If S is an independent set and e & sp(S) then e forms a unique cycle, which we
denote by C(e), with S. A cycle is a dependent set which becomes independent if
any element is removed from it.

If the matroid intersecticn problem only involves two matroids, we can obtain

a maximum weight intersection by producing a sequence of intersections, I(K),

containing X elements, for K = 1,2, ... m. Each I(‘{) is the maximum weight

The algorithm which produces the I(K) is
called an augmenting path procedure because it augments I(K) to produce I(K *D
s finding the longest path in the graph G(K) defined below.

intersection containing K elements.

We define G(K) to be a bipartite graph with nodes corresponding to the elements,
e]., of E plus distinguiShed start and finish nodes, a and z.
defined as follows:

Directed arcs are

(a.i) iekE-sp,aX) (. ieE-15, ¢ c@
Q.2 ek - spah G der-1® L cM

Paths from a to 2 correspond to augmentations of I(K), that is, to sets of elements

to be added or deleted from I(K to produce an intersection with K + 1 elements.

Notice that all a to z paths go alternately through nodes not contained in I(K)
(which are to be added to I(K)) and nodes in I(K) (which are to be deleted).

Note also that there is one more node of the former type than there is of the

latter and hence an augmentation rasults. If we associate lengths with the arcs

equa: to the weights of the elements which the nodes ¢rerespond to (positive for
elements to be added and negative for elements to be deleted), then the length of

a path corresponds to the incremental weight of the augmentation. The longest




path results in an optimal augmentation. Such a path can be found using a short-
est path algorithm suitably modified to find longest paths.
positive cycles and so the algorithm converges.

G(K) contains no

These augmentations do, indeed, result in intersections. As one passes through

i. nodes from a to z we see that an element is added preserving independence in the

first matroid but not the second. An element is then deleted restoring indepen-

dence in the second matroid and hence the intersection. A node is then added
which, because of the deleted node, maintains independence in the first matroid.
This process continues until the added element maintains independence in the
second matroid as well as the first, thus completing the augmentation.

As an example, consider a two dimensional assignment problem (involving, say,

only people and jobs.) The W..'s for this problem are given in Figure 1. 1(2)

is )
ij '
clearly 11,22, i.e., person 1 assigned to job 1, and person 2 assigned to job 2
@

is shown in Figure 2. The arc lengths are shown as are the lengths of the

longest paths to each node from node a. The longest a to z path is a,11,12,22,23,2
which corresponds to deleting 11 and 22 from the intersection and adding 31,12,
and 23. The length of this path, 7, is the difference between the weight of 1(3)
and 1(2). A complete description of this process and a proof of its validity is
given in [5].

A

Generalized Augumenting Paths

In the graph shown in Figure 2, one can obtain an optimal augmentation (i.e., one

which takes us from an optimal assignment of K elements to an optimal assignment
of K + 1) because:

1.

If the current intersection is not maximal then an augmenting path exists.
2.

The labels given to the nodes during the longest path algorithm completely
summarize the augmenting paths.

We now wish to generalize the notion of an augmenti:.> path, and hence the entire
procedure, to the problem of the intersection of three matroids. One way of doing
this is to "freeze" one of the matroids and only consider alternating sequences
within the other two. In this case the first node, s; in an augmenting path would
be independent of I(K) in two of the three matroids (or in all three, in which case
it is the only node in the augmenting path). Say s; is independent of I(K) in the
first and third matroids. We could then freeze the third matroid and maintain the
same span within the third matroid throughout the augmenting path. Thus, the
deletion of S for i even reduces this span and the addition of S; for i odd restores

it. We thus reduce the search space to two matroids and the same polynomial
bounded procedure will work. Note that

the first matroid frozen. Indeed
algorithm.

, alternatively, we could have considered
, it is so frozen in the two matroid intersection
Thus, there are three types of augmenting paths, cne for each matroid

4




l‘ within which s, is dependent. Uniortunately, while this procedure is polyncmial

bounded, it dnes not guarantee optimal solutions as there are augmentations which
have no such corresponding argumenting path.

In order to guarantee that all augmentaticns are explored, we must relax the
definition of an augmenting path still further to include cases where independence
is not necessariiy restored by the deletion of s for i even. Thus, an augmenting

path may start with any element, s;, which is independent of I(K)

in at least one
of the matroids.

Unlike the procedure given for two matroids, one may begin with

independence in any matroid. Consider the graph shown in Figure 3 corresponding
]

to two augmenting paths, Path 1 and Path 2, for the partial assignment 111,222,333
(i.e., person 1 to job 1 on day 1, €tc.) in a TDAP. These paths are not strictly
comparable in that they exclude different elements along the way. Thus in Figure
2, when node 22 is labeled using the path a,32,22 it is equivalent (in terms of how
the path can continue, not necessarily in terms of the numerical value cf the label)
to being labeled using the path a,31,11,12,22. In Figure 3, however, when node
111 is labeled using the path a,411,111 it is different from labeling 111 using the
path a,154,111 because different continuations of these paths are possible. Thus
starting with a,411,111 we can continue to 152 but not 215 and, conversely, start-

ing with a,154,111 we can continue with 215 but not 152. Thus, Path 1 and Path
2 are not comparable in terms of their lengths only.

Such paths must also be compared in terms cf their spans. We note that if two

paths from a to some node i result in sets having identical spans then the same
continuations of both paths are possible.

two matroids.)

(This was the case for intersections of

Indeed, it is possible for paths to have slightly different spans

and still have the same set of possible continuations. In particular, if the only

difference in the intersections of the spans of two paths are nodes outside the

intersection of the spans of I(K), then the paths are comparable. We can thus

generalize the augmenting path procedure to consider ail undominated a to z paths

where one path dominates another only if it has the same continuations and a
larger length.

The notion of a path itself, however, must be generalized as well. In the case of
3 matroids, not all augmentations correspond to paths. We see an example of this
for a TDAP. The augmentation [412,234,341,123) - [111,222,333] does not cor-
respond to any path in the conventional sense. It is possible however, to extend

the augmenting path procedure to include such augmentations by extending the
notion of a path.

We define a generalized augmenting path with respect to an intersection I(K) to be

a sequence cf nodes S = (s,S2, . sm) where s; & E - I(K) for odd i and s; ¢

I(K) for even i. As befcre, I(K) +'s5y - e is an intersection. Also,

the even s; are deleted in order to remove dependencies created by the inclusicn




of the odd S;- Now, however, the subsequences 1K) Sy = Sg *+ .
need not correspond to intersections.

..-sl. for even j

One can thus guarantee an optimal intersection as in the case of two matroids. The
number of ¢generalized augmenting paths one may need to consider, however, may

grow exponentially with K. In practice, however, the number of such paths can

be controlled at the expense of optimality. First, the length of any path, (s, S2,

v, sj), can be reduced by a penalty to account for the nodes which still must be

deleted to restore the intersection. In the case of arbitrary matroids, this may be

complex to compute. In the case of the TDAP, however, where 3 partition
matroids are involved, and all cycles contain 2 elements, it is easily computed.

In some cases the above may keep the computations reasonable. In others; it may
be necessary to reduce the number of paths considered by relaxing the definition
of dominance. This will also result in a heuristic rather than an optimal solution.
In the case of the TDAP, one such relaxation is to ignore differences in the spans
outside the intersection of the span of I(K). This is motivated by the fact that

we consider deleting elements in I(K) in order to include elements blocked by
them.

We can thus consider a hierarchy of generalized augmenting path procadures with
increasingly stringent dominance criteria and increasing runtime. A tradeoff
between optimality and runtime is then available.

We are currently investigating
this tradeoff using the TDAP as an example.
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Abstract
The problem considered is that of finding an optimal (minimum
cost) design for a centralized processing network given a set of
locations, traffic magnitudes between these locations, and a single
common source or destination. Several heuristics, which are efficient
(in terms of their execution time and memory requirements on a
digital computer) and which produce seemingly good results, have
already been developed and are currently accepted techniques. Some
work has also been done on finding optimal solutions to this problem
both as a design tool and as a means of verifying the effectiveness of
proposed heuristics. We focus in this latter area. Currently known
techniques for the optimal soiution of this probiem via integer pro-
gramming have fallen short of the desired objectives as they require
too much memory and running time to be able to treat problems of
realistic size and complexity. We develop an improved technique

which is capable of handing more realistic problems.
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1. INTRODUCTION AND PROBLEM STATEMENT

The problem considered is that of finding an optimal (minimum
cost) design for a centralized telecommunication network given a set
of locations, traffic magnitudes between these locations, and a single
common source or destination. The vast majority of telecommunication
networks currently in existence are of this type. Thus, this problem
has been much studied (2,3,4,5,8,9,12,16,24,28,31,32).

Several heuristics, which are efficient (in terms of their execu-
tion time and memory requirements on a digital computer) and which
produce seemingly good results, have aiready been developed and are
currently accepted technigues. Some work has also been done on
finding optimal solutions to this problem as a means of verifying the
effectiveness of proposed heuristics. Currently know techniques for
the optimal solution to this problem via integer programming have
fallen short of the desired objective as they require too much memory
and running time to be able to treat problems of realistic size and
complexity. We develop an improved technique which is capable of
handling problems of realistic size.

More formally, the problem considered here is that of finding a
minimum spanning tree subject to one or more constraints which in
general are equivalent to demanding that the sum of the traffic asso-
ciated with the nodes in any subtree must not exceed some predeter-
mined maximum.

A minimum spanning tree is a loop-free collection of arcs joining
a set of nodes such that the sum of the lengths of the arcs is mini-
mal. In the case cf a communication network, these collections of

arcs are called multidrop lines.




It should be noted that this constraint form is quite general and
encompasses many real-world constraints which arise in the design of
centralized telecommunications networks. Thus, for example, in
addition to treating the obvious constraint imposed by line capacity,
it is possible to treat a restriction on the number of terminals on a
multidrop line by associating a uniform traffic with each terminal.
Also, the length (cost) functions which can be treated are quite
general. Any function which is not a function of the tree chosen is
permissable.

Formally, we seek to solve the following problem:

Given

1. A vertex (node) set V = {vi|i=0,l,...,n} representing the

terminal locations in the network. Node ) is a distin-
guished node which we will refer to as the center.

2. A symmetric function giving the length (cost) dij of an arc

between any pair of locations.

3. A constraint, m, on the number of nodes which may share a

multidrop line. This constraint can be generalized to allow
a weight or traffic, ¢, to be associated with each node and
to require that the sum of the weights associated with the
nodes on any multidrop line not exceed m.

We define the set of nodes in the jth multidrop line to be V]. and
the multidrop line itself to be a minimal spanning tree TV. on VJ. Viv o}'
Thus, the constraint can be stated in terms of the cardinality of VJ.

as |V].| <m V].. In the more general form, the constraint would be

*
I ¢ <m Vj. We wish to find a tree, Ty, of minimum totai

i
vier

length satisfying the constraint in 3 above. That is, we wish to
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minimize 2 dip subject to 3, where Vp is the immediate predecessor
i=1 i i

of v, Le., the node closest to v, on the path between vi and Vo in
T, and T is any spanning tree. We consider exact (optimal) solutions
to this problem. The primary motivation for the work is to develop
an exact algorithm capable of permitting study of the performance of
heuristics on a broader class of problems than was previously studied,
to gain insight into the performance of both exact and heuristic

procedures and, in particular, to pinpoint where and why they fail.




[I. OQUTLINE OF A NEW OPTIMAL SOLUTION TECHNIQUE

There currenty exist several techniques which will yield optimal
solutions to the CMST problem. These techniques can be divided into
two classes - branch exchange methods (as proposed by Lin (22) and
Frank (9)) and branch and bound methods (10,22). We concentrate
on the latter class of techniques.

The specific application of branch and bound techniques to the
solution of the CMST problem was proposed by Chandy and Russell
(3) and was subsequently refined (2) so that it could treat somewhat
more meaningful problems. Subsequently, Elias and Ferguson (4)
proposed further refinements and thereby expanded the range of
applicability of the technique. Gavish (34) recently developed a
bound using Lagrangean relaxation.

The basic technique is, as has already been mentioned, a branch
and bound algorithm. The original problem considered has all branches
in the category. '"permissible," i.e., any branch may of; may not be
part of the final solution. Subproblems are generated by selecting a
permissible branch and making it "prohibited" in one subproblem or
"required" in another.

The relaxation used is simply to generate a modified MST by
including all "required" branches, excluding all "prohibited" branches,
and forming the tree of minimum total length by connecting (as vet
unconnected) nodes using remaining ("permissible") branches.

Clearly, a solution obtained in this manner is a lower bound on
the value of a feasible solution to the subproblem as it is the tree of
minimum length. Note also that in the case where all arcs are speci-

fied (prohibited or required), the lower bound and solution are




identical and the subproblem fathoms. In general, the subproblem
fathoms when
1. No feasible solution exists to the subproblem. This occurs,
when the required branches form a loop, when the required
branches create a subtree violating the constraints, or
when the prohibited branches disconnect the network.
Other criteria exist but are difficult to test for.
2. The lower bound equals or exceeds the value of the best
solution found thus far.
3. The lower bound solution is feasible.
When all subproblems have fathomed, the current best solution is
the global optimum.
A number of observations have been made, which can be used to
accelerate a basic branch and bound technique. One of these, which
is used in the sequel, is given in Theorem 1 below:

Theorem 1: (3)

If branches (v,,v. ), (Vva,V. ),..., (Va,v. ), are part of
0" iy 0" "y 0" ik
some MST, T, on V then there exists a CMST including
these edges.
Corollary:
If arcs (vo,vjl), (VO’Vj,,)""' (vo,ij) are present in the

modified MST producedﬂin any subproblem, then (if any
CMST's exist in the subproblem) there exists a CMST on
the subproblem containing these arcs.
The preceding theorem and corollary allow one to avoid consider-
ing subproblems with such arcs prohibited. The techniques devel-
oped in the sequel make explicit use of both observations as well as

others made in the references cited.




The inherent problem with the existing procedures lies in the
relaxation method used. At each step, the problem is relaxed to a
modified MST. Unfortunately, this bound is often toc loose to elimi-
nate a sufficiently large percentage of the subproblems to make the
procedure practical. This is particularly evident when the constraints
are tght; it is for such problems that the relaxation is loosest.
Unfortunately, it is also for that class of subproblems that the known
heuristics display the widest variation in the quality of solutions.

Note that any optimal solution to the CMST problem has the
property that all subtrees are MST's on the set of nodes contained in
the subtree and the center. Thus, it suffices to find the optimal
partition of the nodes into subtrees. The technique which is devel-
oped in the following sections will thus generate partitions of the
nodes.

The technique works within the framework of branch: and bound
algorithms, as did the techniques referred to above. We develop two
algorithms, one based on generating subproblems by restricting
nodes, and the other based on generating subproblems by restricting
arcs. These techniques differ from previous ones in that the relaxa-
tion used here is tighter and thus, a smaller number of subproblems
need be examined.

We begin by restricting the problem slightly. We seek a CMST
subject to the constraint that the number of nodes (rather than the
sum of the weights of the nodes) in any subtree not exceed a pre-
specified maximum. Since »ur primary intent here is to study the
performance of CMST algorithms, this modification would not, in

general, have a significant effect. Indeed, if one preferred, a node
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of weight K could be replaced by K nodes of weight 1, providing one
is willing to allow the original node of weight K to be split among
more than one subtree.

To find a partition of the nodes V = {vil i =1,2,...n} into
subtrees, we begin by making n copies of each node corresponding to
the possibilities of the node being in any of n possible subtrees.
Thus, Vij corresponds to node v, being in subtree j.

The problem of obtaining an optimal partition of nodes into

subtrees can be thought of as one of selecting an coptimal subset from
the set E = {vijl i=1,2,...n; j=1,2,...n}. Feasible sﬁbsets of E,
i.e., those corresponding to partitions satisfying the capacity con-
straint, will contain 1 vij for each i and at most m Vij's for eacn j.
If we associate a weight, wij’ with each Vij’ the optimal subset of E
(hence the optimal partition of V) is defined as the feasible subset of
minimum total weight.

An efficient algorithm (see 14, 21, 35) exists for the solution of
the problem of finding the optimal subset of E given the values of
wij' The algorithm, which can be thought of as a matroid interesec-
tion (1,17,19,20,29] algorithm or alternatively as a series of shortest
path prcblems in appropriately defined graphs, has a worst case
running time of crder n® and in practice has a running time clocser to
order n? (see 35). Unfortunately, the set of weights, wU., which
correspond directly to the "cost" (contributicn to the overall length
of the CMST) of v in subtree j can be specified only when the pro-
blem solution is already known. We can, hcwever, define a set of

weights, w;]., which have the property that the optimal partition found

using these weights will have a value (sum of weights) which is a




iower bound on the length of the optimal CMST. Thus, we can relax
the CMST problem to the problem of finding an optimal partition.
This, together with generating subproblems by successively restrict-
ing either nodes or arcs, gives rise to an optimum CMST algorithm
within the branch and bound context.

An appropriate set of weights, wij' can be defined as foilows.

Suppose we are given, for each subtree

P

i, the set Vj of nodes per-

-

mitted in the subtree; a procedure for obtaining the V). will be given
below. One can then find Tj' the minimum spanning tree on the
nodes in V]. v {vo}. Let dij be the length of the arc connecting Vi

to its predecessor in Tj (i.e., d,. is the length of the last arc in the

1}
path from vy to v in Tj)' The following theorem, which is proven in
(35), allows us to obtain appropriate wij: ‘;

Theorem 2: The weight of the optimal partition using w.u. dij is a

lcwer bound on the length of the CMST for the same V and M

Furthermnre, 1t is proven in (35) that other similarly defined
‘N .
1]
contains a path (vo,...vp, vq,...vx,...vy,...) as shown in Figure
1. Let S be the set of nodes {vq,...vk,...v } and let Wy be the

S

's also preserve this lower bound. In particular, suppose T].

largest weight of any node in S. Suppose ij > ij' Define A =
ij - wkj' Then the following theorem holds:

Theorem 3: If a set of weights wij = dij is modified by transferring
weight A from ij to wsj where 4, vp and vy are defined as above,
the weight of the optimal partition is still a lower bound on the length
of the CMST for the same V and m.

Theorem 3 allows us to transfer weight frecm a node to its suc-

cessors in T. in order to guarantee that the lower bound obtained




from the partitioning problem is at least as tight as the bound ob-
tained using an MST, as is done in (2), (3), and (4). A precof that
this can always be done is given in (35). As an example of how this
works, consider the network shown in Figure 2a. The MST for this
network and the node weights corresponding to it are shown in Figure
2b. These weights correspond to the bound obtained using an MST.
Suppose, however, that we restrict v; from being part of a given
| subtree j. The weights shown in Figure 2c would then be obtained if
we simply set w.. = d... Note in particular that w2j has been reduced

ij ij
from S to 1. This reduction in w2j could result in a 'cosening of the

lower bound. Theorem 3 allows us to transfer up to A = wlj - w2j’

i.e., 7 units of weight, from wlj to w2j and obtain the weights shown

in Figure 2d. Note that the wi]. in Figure 2d are at least as great as

the wij in Figure 2b. Thus, the lower bound obtained using the wu.

in Figure 2d will be at least at tight as that obtained using an MST.

In fact, the bound so obtained is significantly tighter, as is shown
by the computational experience given in Section V.

We now turn to the question of the branching rule within the
branch and bound procedure. Little was said by Chandy and Russell,
Chandy and Lo, and Elias and Ferguson on the order in which sub-
problems are considered in the branch and bound procedure. Classi-
cially, two approaches are available. The first is to always consider
the subprobiem with the least lower bound. Alternatively, one can
use depth first search, where one always solves most recently gener-
ated subproblems before returning to older subproblems. There are

advantages and disadvantages to both approaches.
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The first approach allows one to proceed without any good
feasible solutions to guide the process. The assumption is that
subproblems with the lowest lower bounds will give rise to the best
feasible solutions. Hence, one prefers to explore these subproblems
first in the hope that they will give rise to low cost feasible solutions
which will eliminate other subproblems (with higher lower bounds)
from consideration. Also, by examining subproblems in this order,
one is continually narrowing the range between the upper and lower
bounds, and hence, has the option of terminating the algorithm when
the interval shrinks to some prespecified width.

There are, however, two major drawbacks to this appfoach.
First, one must keep (a potentially large number of) subproblems
around in order to select the next one. Thus, the storage required
for the procedure is potent'ially exponential. In practice, it was
storage, net running time, which was the active constraint on problem
size in previously developed techniques. One could temporarily store
subproblems in secondary storage, but this would complicate and siow
down the procedure.

Second, by considering problems in ascending order of lower
bound, one will, in general, be sequentially considering dissimilar
subproblems. Thus, one cannot easily take advantage of informaticn
obtained in the solution of one probiem for the solution of another.
For example, in the Elias and Ferguson technique, the similarity
between modified MST's for related subproblems cannot be -easily
exploited if this first prccedural outline is adopted.

Using depth first search overcomes both of these abjections.

Indeed, a great deal of simplification is obtainable both in the genera-




tion of subproblems and in obtaining solutions owing to the similarity

of successively considered subproblems.

The maximum number of subproblems which need be kept around
at any time is bounded by the number of nested specifications it is
possible to make. Thus, if one is restricting nodes, the bound is n;
if one is including or excluding arcs, the bound is (g). This essen-
tially eliminates storage as an active constraint on the size of the
problem which can be considered.

A further reason for using depth first search is that the major
reasons one would ordinarily choose the first procedure are not
present here. Any of the existing heuristics can ‘be used to quickly
generate a good upper bound. Furthermcre, the procedures devel-
oped in the sequel lend themselves to generating feasible solutions for
all subproblems. Thus, a good upper bound is always available.

Hence, depth first search is used in developing the techniques
in the sequel. It should be further noted that the philosophy used
in developing these techniques was to create the simplest, most flex-
ible framework within which to work so that a variety of acceleration
techniques could be developed and tested. The concentration is on
restricting the number of subproblems examined (which is exponential
in n) rather than the amount of work spent on each subproblem

(which is a low order polynomial in n).




[II. NODE PARTITIONING

The first exact technique built around the above relaxation is

one which generates subproblems by restricting the subtrees a node

is allowed into. The procedure is described below. We begin by

describing the initialization procedure.

Step O:
0.1)

0.2)

0.3)

0.4)

0.7)

0.8)

(Initialize)

3
Find an upper bound, z , using a heuristic to generate
a good, feasible solution.

Find an MST, T, and identify arcs (vo,v. ), (VaV. ),
iy 0 i

e (VAL V)L
0 Iy
Reorder the nodes so that Vi V| _,...V; are now v,,
1 2 k
Voueee sV
TRUE i #j
For 1 < n, set Ri' =
) FALSE i = j

[Rij is a logical variable which is set to TRUE if Vij has
been removed from consideration in this subproblem.

Observations made above allow us to remove some Vii

immendiately].

[ TRUE i >
For k <i<n, set R; =
j \ FALSE i < j

For i < j < n, find an MST, Tj' on Vj Uvo, where

Vj = {vilRij = FALSE} i.e., Vj is the set of nodes
permitted in subtree j.

Set wi]. = d where di]‘ is the distance from v to its

ij
predecessor in Tj'

For j = 1,2,..., k, exchange weight between wi]. for
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different wvalues of i so that the resulting modified
weights, wi'j' satisfy:
Wij 2 Wig
where Wio = dipi in the unconstrained MST, T, gener-
ated in Step 0.2 above.
0.9) For j = k+l1,..., n, exchange weight between wij SO
that the resulting wi'). satisfy

' -
wi']. > wij 1

The justification for all of these steps was given in Section 2.

Steps 0.8 and 0.9 guarantee that the individual wi'j will all be at
least as great as the weights assigned using unconstrained MST.
Hence, this is a realization of the statement that the lower bound
obtained using this procedure must be at least as great as the lower
bound obtained using an MST. This also holds true for subproblems.
Thus, we have initialized a subproblem with nodes 1,2,..., k forced
into subtrees 1,2,..., k, respectively, since, for i < k, Rij = TRUE
for i # j. In the course of the depth first search, we keep track of
the following variables:

d = The depth of the search, i.e., the number of nodes

which have been forced. d is initialized to k.

dMIN = The minimum allowable depth. dMIN is initialized to k
since at least k nodes should will be forced.
de = The subtree which the dt'h node is forced into.

The depth first search proceeds by forcing node k+1 into sub-
tree 1; i.e., d is set to k+l and Iwk*_1 is set to 1. It continues

either by increasing d (to force another node) changing de (to force
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a node into a different subtree) or decreasing d (to release a node
after forcing it successively through all subtrees). The depth first
search procedure follcws.

Depth First Search Procedure

fe

Step 4:

Step 5:

a few Ri)

Step O:

Step 1:

E

Step 3:

Initialize problem (Steps 0.1 through 0.9 above).
Set d = k+1

Set d = k+] Set IW, =1

MIN d

Solve the currently defined subproblem; i.e., find a
lower bound 2r and a feasible solution 2p-

if the current subproblem fathoms; i.e., zp 2 2p, go
to Step 3; otherwise go to Step 5.

Set IW d= w a* 1

if Wy > NMAXd go to Step 4; otherwise set up a new
subproblem and go to Step 1. NMAXd is the highest
indexed subtree which the node at depth d may be
forced into. In section 3 we observed that one should
not skip over subtrees. Thus:

NMAXd = max (K, max [Iwi]) K<i<d

Set d = d+1

If d < dMIN stop; otherwise set up a new subproblem
and go to Step 1.

Set d = d+1

Set IWd =1

Set up new subproblem and go to Step 1.

To set up a new subproblem, one need only modify the vaiues of
. to impose (or remove) the restriction implied by the alter-

nation of d and de. Thus, after d is set to d+1 and de is set to 1:

iy o B
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4

{FALSE j=1
R, =
dj TRUE j > 1

After de is set to de + 1:

Rd'de = FALSE

-1 = TRUE

R
d,IWd

After d is set to d - 1: -
{
FALSE j < NMAX4
Rci+1 j =
| /) TRUE j > NMAX ‘

The search space can be further pared using the corollary to

Theorem 1. If, in any subproblem, one finds that two nodes, v, and

Vj' both forced into the same subtree appear in separate subtrees in

the MST formed: on the: set of permissable nodes in that subtree, then

the subproblem may be discarded.

As was mentioned, this optimal technique based on generating a
partition lends itself simply to obtaining a feasible solution to each
subproblem. The partition generated at each step is feasible. Cne
need only generate MST's on each group of nodes to obtain a feasible
solution. A simple acceleration technique, which proved tc be quite
v_ by

k¢1’°°" "'n “°
distance from Vo nearest first. This tended to increase the lower

effective in practice, was to reorder the nodes v

bound most rapidly. Such nodes, when restricted to a single sub-
tree, were absent from all others, and the "deprived" subtrees were
often forced to connect to vy over longer arcs.

The Rij are used in the optimal partiticning procedure in a
straight forward fashion; any element Vij' with its corresponding Ri'

J
= TRUE, is considered to be removed from the problem.
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The weight exchange procedure described as part of the initiali-
zation, which guarantees that the weight on each node will be at least
as great as its contribution to the length of an MST, is used here as
well. At each level, K, in the decision tree, we save the values of
the wi'j in a variable referred to as wa] We then demand that wi'j =
wii{j > &‘l;l i.e., we exchange weights to enforce the restriction. The
justification for doing so is identical to that used in the initialization
procedure. Note that this exchange guarantees not only that the
lower bound will remain tighter than an MST, but also that the lower
bound will be monotone with the depth in the decision tree. Neither

of these things is true without the exchange.

NP .
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IV. ARC RESTRICTIONS

Anoth-~ method of applying this relaxation technique to the
solution to the CMST problem is to restrict arcs; i.e., to force arcs
to be either "prohibited" or "required" as was done by Chandy and
Russell and Elias Ferguson. Thus, the initialization and subproblem
solution are essentially the same as they were in the technique des-
cribed in the previous chapter, but the method of generating subpro-
blems is different. The solution order is still a depth f{irst search.

Some differences exist in the initialization procedure. Instead of
forcing a node into a subtree, we simply "require" the arcs (il,O),

., (iK,O) which are part of the unconstrained MST. This is, of
course, equivalent to what was done in the previous case. It is
implemented in a slightly different way, however.

The entire procedure, both during initialization and during
subsequent subproblem generation, restricts itself to dealing with
established arcs, i.e., arcs which connect a node directly to Vg or to
other nodes connected to Yo by established arcs. Thus, each
"required" arc forces a node into a given subtree and each
"prohibited" arc forces a node ocut of a given subtree. As a new
subtree is encountered (i.e...., when an arc of the form (vO, Vi) is
made "required”"), we simply assign the next available subtree number
to the subtree.

Subprokblems are generated by successively restricting (requiring
or prohibiting) established arcs. We again use d to represent the
depth of the search. Here, however, d refers to the number of

forced arcs rather than the number of forced nodes. Note that while




the number of required arcs is limited to n, the number of prohibited
arcs is not. We thus have a different type of decisicn tree than we
did in the previous section.

When forcing nodes into subtrees, we dealt with a tree of depth
n but with nodes of degree sometimes as great as n. Here, we deal
with a binary tree of depth as great as (121). It is not clear, how-
ever, especially with the paring techniques being used, which deci-
sion tree is actually larger.

The arc chosen for inclusion is,in each case the next arc to be
brought in by Prim's MST Algorithm (25); i.e., the shortest arc
connecting a node to some node connected to Yo by required arcs.
This has several advantages:

1. The arc chosen, if excluded, will tend to raise the lower
bound. This is important as it helps control the size of the
decision tree. Since a potentially large number of succes-
sive arc exclusions is possible, it is important that an arc
exclusion result in an increase of the lower bound as often
as possible so that the fathoming process will limit the
depth of the search.

2. If the arc is of the form (vo, Vi)’ it need only be consid-
ered as "required" and not "prohibited." This is a direct
consequence of Theorem 1.

3. If the arc (Vi’ v].) is prohibited, and hence, vy is excluded
from the subtree containing vj, then so are all arcs of the
form vy, vK), where Vi is forced into the same subtree as
v].. This is a direct consequence c¢f an Elias and Ferguson

result.

4



We omit the details of the remainder of the implementation of the

arc restricting procedure as they are similar to the node restricting

procedure described above.

P
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V. COMPUTATIONAL EXFERIENCE

The procedures described in the previous two sections were
coded in FORTRAN and run & PDP-10. In this secton, we discuss
the results of experiments run to test the behavior of their run time
and effectiveness as a function of problem size and constraint tight-
ness.

Problems were generated by reading in n and m and generating
random X and Y cocordinates for the nodes within a unit square. The
location of the center was, in various problems, either random,
centered, or in the corner. Euclidean distances were used. Most
experiments were run with the center at the geographic center of the
urit square; in this way, larger problems could be examined.

Several series of problems were run with identical values of n
and m {(and, of course, different randomly generated points) tc see
how stable the running time is from cne problem to another. The
standard deviation was found to be close to the mean for the problems
run. This essentially sa- .nat we should not pay close attention to
exact run times or the exact number of subproblems examined.

Series of problems were run varying n and m and using both the
node restricting and arc restricting procedures. Both procedures
were run with the identical problems and, furthermore, the same set
of nodes was used (with new nodes added as the problem size grew)
for all problems in this series. This results of this experiment are
shown in Table 1. As can be seen, the running times for both
procedures were comparable and run time grows exponentially with
problem size. (It was gratifving to find that the optimal scluticn

values found by both prccedures always matched!)
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[t has already been mentioned that these procedures yield iower
bounds which are at least as great as thcse obtainable using uncon-
strained MST's. This was verified empirically by actually generating
lower bounds with MST’'s as the algorithm proceeded. The program
was {0 print any exceptions, i.e., any times where the MST gener-
ated a higher lower bound; none occurred. Ffigure 3 shows some
typical lower bound values obtained using partiticning and MST's. As
can be seen, not only are the partitioning lower bounds greater, but
they grow more quickly with depth. This is significant, as a linear
increase in lower bound value will reduce the run time exponentially.

To measure the impact of the difference in lower bounds between
the MST and partitioning methods, several problems were run first
with the partitioning method and then with the MST method of lcwer
bounding. The results of this experiment are shown in Table 2. As
can be seen, the partiticning algorithm examines a much smaller
number of subproblems, and apparently, its effectiveness increases as
the probiems grow larger. Thus, although it is scmewhat more diffi-
cult to evaluate the lower bound using the partiticning algorithm than
it Is using an MST, it is less than n times as hard to do so. The
reduction in the number cof subproblems which must be examined
sppears to be sufficiently great to warrant the use of the partiucning

technique. Indeed, as the problem size grows, its attractiveness

seems 1O lncrease.
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VI. SUMMARY AND CONCLUSIONS

The purpose of this study was to develop improved exact tech-
niques for the solution of the CMST probiem (a model of the multidrop
line problem) so that known heuristics for the solution to that prob-
lem could be examined on a broader class of problems and so that new
heuristics could be developed on the basis of what was learned.
Much of this happened. An improved exact technique, based upon
generating lower bounds using partitioning instead of MST's, was
developed and computational experiments were run using it. The
bounds yielded by these techniques were tighter than those yields by
the MST based techniques, and hence, the number of subproblems
which had to be examined in order to obtain a solution was smaller.
Indeed, the decrease in the number of subproblems examined more
than compensated for the increased effort required for the examina-
tion of each subproblem. Thus, the new techniques served their
purpose in that they permitted the examination of problems not care-
fully examined before. In particular, it was possible to examine
problems with very tight constraints, although it was not possible to
examine problems of substantially greater size than had been pre-
viously examined.

Even with the improved technique, the growth of run time with
respect to problem size was found to be exponential, albeit of a lower
order than previously know exact techniques and of a much lower
order than the solution space. Thus, one cannot use the technique
for large problems. A number of acceleration techniques were devel-

oped and incorporated into the procedure.

e = oy

e TN

IO il




Thus, it was possible to examine sufficiently interesting problems

using the exact technique to make several insights into the problem.
The first is that the performance of the known heuristic degrades as
the constraint tightness increases and improves as the problem size

increases. An imporved heuristic [33] was also developed on the

basis of this study.

. X
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Table 1: Number of Subproblems Examined

n  m Node Restricting Arc Restricting
8 2 16 34
8 3 13 24

10 2 120 199

10 3 57 68

10 4 67 73

12 2 298 696

12 3 375 362

12 4 171 138

14 2 766 723

14 4 526 379

16 3 not run 1085

16 4 818 737

18 3 not run 6832
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TABLE 2: COMPARISON OF NUMBER OF SUBPROBLEMS EXAMINED
USING MST AND PARTITIONING AS LOWER BOUNDS

NUMBER OF NUMBER OF
SUBPROBLEMS SUBPROBLEMS
n m (MST) (PARTITIONING)
8 3 87 . 24
12 3 2,767 362
20 7 4,205 146
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